

IPv6 Related Activities in Japan

Hiroshi Esaki, Ph.D.

Professor, The University of Tokyo Vice President, JPNIC(Japan Network Information Center) Executive Director, IPv6 Promotion Council of Japan Board member, WIDE Project Board of Trustee, ISOC

AGENDA

- 1. Issue of IPv4 Address Depletion
- 2. Task Force on IPv4 Address Exhaustion
- 3. Explore the New Business Areas

Important activities by ISOC

- "IPv6 is critical issue" to resolve, i.e., deployment of IPv6 is very important as OECD and IGF(Internet Governance Forum) topics
- Officially Identify as the major strategic initiative "Trust and Identifier"

Resolution on December 8, 2007 at Vancouver, Canada

What is our goal ; toward the <u>"Eco-System"</u>

- Back-Ground
 - There are many systems/networks with IP
 - Still, there are many non-IP systems/networks
 - Networks and Systems are tend to be <u>Fragmented</u>...
- Objective and Goal
 - Avoiding the fragmentation of IP systems/networks
 - Encourage the collaboration among sub-systems
 - Explore the "Eco-System", that deliver the cheapest

Japanese MIC formed study group

http://www.soumu.go.jp/joho_tsusin/eng/pdf/080617_1.pdf

- Mission: "How to achieve smooth IPv6 introduction"
- Some interesting discussion and analysis
 - 1. <u>There is no free lunch ! All must pay money on IPv6.</u>
 - Squeezing out the global IPv4 address from existing network looks so hard.... JPNIC had got less than 2% of address space.....
 - 3. <u>IPv4 address exchanging market may generate the company</u> <u>accounting issue, since IPv4 address may become as an asset.</u>
 - 4. <u>Broadband Internet consumes a lot of global IP(v4) addresses</u>
 - 5. <u>RIPE is large IPv4 address consumption as well as BRICs area.</u>
 - 6. <u>The largest sacrifice is business/service deployment for new</u> <u>companies and for legacy companies</u>
 - 7. <u>Contents provider and system integrator should join</u>
 - 8. <u>Translator between large clouds will not work....</u> Put it at the

Japanese MIC formed study group

Mission: "How to achieve smooth IPv6 introduction

6. <u>The largest sacrifice is</u> <u>business/service deployment</u> <u>for "new" companies and</u> <u>for "legacy" companies</u>

7. <u>Contents provider and system</u> <u>integrator should/must join</u>

Translator between large clouds will not work..... Put it at the

Japanese MIC formed study group

Mission: "How to achieve smooth IPv6 introduction

8. <u>We may need carrier-class NAT</u> <u>boxes in the network.</u> <u>But, serious technical issue will</u> <u>occur, regarding the number of</u> <u>TCP sessions.....</u>

Contents provider and system integrator should join

Translator between large clouds will not work..... Put it at the

NTT Communications Shin Miyakawa, Ph.D

However.....

- <u>Limitation</u> on the number of session states for NAT operation
- Each user could use certain number of sessions
 - How many sessions ?
 - Even as the best case, <u>65,536</u> is the maximum number of sessions, <u>shared by customers</u> accommodated into a single IPv4 address

→ When the number of users is 2,000, it will be only 30 sessions

→ This means.....

Max 30 Connections

Max 20 Connections

Max 15 Connections

Max 10 Connections

0

Max 5 Connections

Some examples of major Web site

Application	# of TCP sessions
No operation	5 ⁄010
Yahoo top page	10/~20
Google image search	3 0 /~HO
//////////////////////////////////////	50/~80
OCN photo friend	170%200+
iTunes	230/270
iGoogle	80%100
% (Rakuten)	50%60
Amazon	70
HMV	JOO
YouTube	90

Source; Mr,Y.Matsuzaki of IIJ A vs AAAA

Source; Mr,Y.Matsuzaki of IIJ

Number of source node for Queries

Source; Mr,Y.Matsuzaki of IIJ A vs AAAA

AAAA query and reply

AGENDA

1. Issue of IPv4 Address Depletion

2. <u>Task Force on IPv4 Address</u> <u>Exhaustion</u>

3. Explore the New Business Areas

Task Force on IPv4 Address Exhaustion Kicked off on September 2008 http://kokatsu.jp/index.html

Organizations in TF

Chair: Prof. Hiroshi Esaki, University of Tokyo Vice Chair: Mr.Takashi Arano, Intec NetCore

- Participating organizations
 - 1. IPv6 Promotion Counsel (v6PC)
 - 2. Internet Association Japan (lajapan)
 - 3. Next Generation IX Consortium (distix)
 - 4. Communications and Information network Association of Japan (CIAJ)
 - 5. TELECOM SERVICES ASSOCIATION
 - 6. Telecommunications Carriers Association (TCA)
 - 7. Japan Approvals Institute for Telecommunications Equipment (JATE)
 - 8. Japan Internet Providers Association (JAIPA)
 - 9. Japan Cable and Telecommunications Association (JCTA)
 - 10. Japan Data Communications Association (JADAC)
 - 11. Japan Network Information Center (JPNIC)
 - 12. JApan Network Operator's Group (JANOG)
 - 13. Japan Network Security Association (JNSA)
 - 14. Japan UNIX Society (jus)
 - 15. Japan Registry Services Co., Ltd. (JPRS)
 - 16. WIDE Project (WIDE)
 - 17. Ministry of Internal Affairs and Communications (MIC)

Two important messages;

1. Even if you have large IPv4 addresses, you must be suffered

2. There are a lot of IPv6 Ready equipments, thanks VISTA (and Windows7) and Mac OS-X.

Premise and Our Mission

- "Migration to IPv6" is not our primary mission.
 But, "<u>Correspondence against the IPv4 address depletion</u> is our mission".
- Premise/6
 - ✓ In about 2 or 3 years, you will experience the difficulty to obtain the global IPv4 address.
 - The most suffering player and area is for the introduction of new business and for the expansion of business.
 - ✓ <u>All the stakeholder will be suffered</u>.
 - ➢We need the collaboration and harmonization among stakeholders.

Recognized Stakeholders 🛞

- System owner (Public and Private Sector)
- System Integrator
- Hosting, ASP
- System Operator (out-source, self-operation)
- Network Provider
- ICT Equipment Vendor
- ICT Software developer/vendor
- End-User, e.g., residential customer
- Corporate user
- Analyst, investigator
- Educational Organization (e.g., university)

How you should implicate W

- As a Business Opportunity
 - Innovation, revolution and creation of businesses regarding the system and network industry.
- As a Risk Management
 - Preferential treatment for the existing operators will be hard
 - Even existing operators (i.e., ISP, ASP) will experience the difficulties
 - Expectation to "IPv4 address trading market" would be of risk.
 - System, network and service security issue

Message to ISP

- 1. In order to provide the network connectivity for IPv6 only servers, ISP must carry IPv6 packets
- 2. Carrier-Grade NAT is just transitional solution.
- 3. The system development/deployment against IPv4 address depletion is against the business risk.
- 4. The cost for system development may be ought to be considered as a risk management..

- 1. Server operators will be suffered, first, since the server node needs global (IPv4) address.
- 2. At least, after the IPv4 address pool depletion, the IDC that have available global IPv4 address would have better business superiority than the IDC that does not have.
- 3. Many IDC companies and operators may not have correct technical understanding, and may anticipate the system will be modified overnight...But, it would be of business risk....

Action Items by the Task Force

- 1. List up the issues to solve by each player
- 2. Information sharing among related organizations
- 3. Establish the Q&A center
- 4. Design and operation of testbed
- 5. Design and operation of education package
- 6. Issues and it's solution of security during the transition process
- 7. Out-reach to new stakeholders suffered by IPv4 address depletion

Working Groups within the TF

WG	In charge of	lead	members
Publicity	Assistance for events/conferences of member associations, Regular press conferences Planning of outreach	JPNIC	IAJapar%Telesa, JAIPA% 6PC
Education and Testbed	Education programs, negotiation with certification providers, planning the testbed	v6PC	JPNIC%JATE%JAIPA% JCTA/JCL%JANOC%jus% WIDE%DISTIX
Action planning support	Supporting the action planning by every stakeholder	v6PC	IAJapan, Telesa, JAIP <i>&</i> % JPNIC
Applications	Enlightening the Slers,	v6PC	JUS%JISA
Access Network	Negotiation with Access Network providers	JAIPA	TBD
Ready Logo Planning IPv6 Ready Logo for ISPs and Web sites		JATE	v6PC
Secretariat		v6PC	JPNIC

Activities of

Action Planning WG

From http://www.kokatsu.jp/blog/ipv4/en/data/090217_v4exh_actionplan_en.pdf

Network Operators' timeline

- Organized by Education and Testbed WG in the TF
 - Kawasaki Campus , Keio University
 - Osaka Data Center at Broad Band Tower
- Purpose
 - Provide an environment which can simulate the IPv4 exhaustion and the actions towards exhaustion
 - Establish transition scenarios in multiple circumstances
 - Human resource development programs
- Targets
 - ISP, CATV, iDC, ASP, CSP, Hardware Vendor, Software vendor, Security Vendor, Sier, etc.

Activities of Ready Logo WG

- Allow IPv6-ready ISPs and Web sites to *"differentiate from others"*
 - Apply and extend the strategy of "IPv6 Ready Logo" for equipments to services like ISPs and Web sites
- Had domestic and Intra-TF discussion, then synchronize it to *"IPv6 Enable Program"* of *IPv6 Forum* – launched in June 2009
 - Why don't you get the logo at:
 - http://www.ipv6forum.com/ipv6_enabled/ipv6_enable.php !!

Kokatsu.jp has already put on the logo, of course!

AGENDA

- 1. Issue of IPv4 Address Depletion
- 2. Task Force on IPv4 Address Exhaustion

3. Explore the New Business Areas

Lessons from IPv6 Operations as a business incentive

- IPv6 is ready to go into professional and business operation
 - Initial cost:
 - New services;

Especially, when you can start some new services/applications, the cost of IPv6 is almost same as of IPv4. Sometime, cheaper than IPv4, due to simple network design.

- Running cost / life-time cost
 - How will you come up with merging, restructuring of organization

Nationl-wide IP-Phone Installation

◆IP-Phone (by FreeBit)

✓ IP-phone solution based on shared IP Centrex
 ✓ Has already installed 20,000 terminals to 280+ sites of dormitories to manage their distributed facilities within 18 months

System Target

- -Reduction of initial and running cost
- -Provides the service such as PSTN quality
- -Easy Operation for diverse / distributed facilities
- (e.g. by dormitory operator)

What IPv6 achieves

% Simplifies Network design / re-design

→ fall into only three install manuals

%Reduce the required human-resources and it's cost

- 1. Installation
- 2. Mis-configuration (i.e., $300 \rightarrow$ single number)
- 3. Trouble shooting

Nationl-wide IP-Phone Installation

Why we go to new continent ?

- Contribution of revenue by ICT industry in the <u>GDP is less than 10%.</u>
- More than <u>90% revenue</u> in GDP is come from <u>non-ICT industries</u>.
- Almost all the companies, including non-ICT industries, <u>depend on ICT technology</u> on their corporate operation.
- How to use the ICT defines the marketing power and operating power of companies.

Source%Hiroshi Komiyama, Ph.D, MRI Ltd.,

How to use the sensor network e.g., saving energy in building system

- Huge operational cost
 - Large energy (e.g., gas, electricity) cost
 - About 30% energy saving has achieved !
- Proprietary technologies
 - Large complex has more than 200K monitoring and controlling points
 - Each systems use different technology
 - \rightarrow Let it with open TCP/IP technology (i.e., IPv6)
- COP3 by United Nation
 - 10%-30% energy saving

Interesting Topics at INTEROP Tokyo 2009

• "Smarter Planet" by IBM Japan

Let smarter all the facility and activities

e.g., Cloud R&D platform, Rea-time PDCA with real-time data

- Energy Consumption by IT/ICT is only few %
 - Facilities (50%), Transportation (25%), Factory (25%)
 - e.g., factory is not industrialized......
 - Facilit%25% for IT/ICT equipments, 75% for facility management

Life-time cost in Building System

Special Project at the Univ. of Tokyo "Green University of Tokyo Project"

- Building No.2, Hongo Campus
 - Targeted reduction;
 - <u>15%=\$4M USD (in 2012)</u>, <u>50%=\$30M USD (in 2030)</u>
 - 12 floor high, R&D and R&E activities
 - Established October 2005, Start of Operation in March of 2006
 - More than saving energy
 - Forming R&D consortium

Mission Statement

- 1. Contribution to TSCP (Todai Sustainable Campus Project)
 - 15% reduction in 2012, 50% reduction in 2030.
- 2. Green IT campus
 - Reduce power consumption by ICT equipments
 - New operation and design model of campus
- 3. Testbed operation for the evaluation and establishment of Green facility networking and controlling.
 - Cooperative facility networking
 - Explore the new business
- 4. <u>Technical Specification for Interoperability</u>
- 5. <u>Referenced procurement specification for campus</u>
- 6. <u>Specification of Benchmarking and Rol for saving energy</u>

%

- %**********
- % (WILCOM)
- %
- %
- %
- %******
- Cisco Systems Japan
- CITRIX SYSTEMS JAPAN 9866
- %*****
- %
- %******
- %
- %
- %*****
- %
- %
- %
- **%********
- %
- *%*

Estb.June 09, 2008

- *%%%*,0000000/
- 700000 / 0000 / 0000
- •**%‱%**
- •**%**

- •LONMARK JAPAN
- •
- •FNI
- •**%**

- $\bullet \texttt{UIDP} \texttt{MIDP} \texttt{$
- •IPv6/200000000
- •%
- %
- •**%**
- •‱

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Estb.June 09, 2008
•	%00/00/0000/0000	
•	99999999999999999999999999999999999999	
•	9000NTP20000000	• ////////////////////////////////////
•	70007000	• ////////////////////////////////////
•	70007000	• ////////////////////////////////////
•	920 720	• ° ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
•	₩ ₩	
•	Cis 40 C	Organizations
•	Cī	0
•	M 27 Corne	vations 13 NPOs
•	<b>%</b>	
•	9%	
•	97 <b>6</b>	• ////////////////////////////////////
•	2000/00000000 /0000/0000000	• <b>%</b>
•	7000700 70000700	
•	70007000000/ // 00007000000	
•	70007000	•IPv6/20000000
•	70000070000	● <u>//00000</u>
•	700000070000 //	● <u>////////////////////////////////////</u>
•	77007000 70007000	● <u>////////////////////////////////////</u>
•	700070000	● 0000/ //0000

#### Participants

- %****************(WILCOM)
- %%%NTP/%%%%%%%



- Stakeholders on Facility Business;
  - Developer, e.g., landlord
  - General Contractor/Con"s"tractor

99999999 /0999/

- System Integrator
- System Designer
- ICT Vendor
- Component vendor, e.g., sensor
- Standardization Body
- R&D organization, e.g., University
- Local government, e.g., Tokyo

• %



- 1. <u>Sub-systems have never cooperated to</u> <u>each other.....</u>
- 2. Enough stupid to deny the cooperation and coordination....
- 3. Isolated and proprietary sub-systems.....

#### Expensive and Stupid System i.e.,



#### **Experimental operation**

UBITEQ, Panasonic EW, Cisco Systems, {Yamatake}

◆システム構成







# Referenced System Architecture for standardization



#### Conclusion

#### Metropolitan design; Real-Space Internet with IPv6

#### **Source: Matsushita Electric Works**



#### Innovation of Metropolitan Design Principle



### What we (really) expected ?

 Win-Win relationship between Environment /Energy-saving and Ubiquitous networking

Step.1 Mandatory components

- 1. Sensors and actuators network
- 2. Collaborative operation among individual components
- 3. Control the energy flow using the information
- Step.2 Ubiquitous digital space sharing all the digital information
  - (*) Each equipments and components are already paid-off !!

Step.3 Invention and innovation for new applications

This is the "internet End-to-End Model"





www.wide.ad.jp

## Thank you



IPv6 Promotion Council of Japan: http://www.v6pc.jp/en/index.html e-mail: info@v6pc.jp



Task Force on IPv4 Address Exhaustion: http://kokatsu.jp/



<u>Green The Univ. of Tokyo Project</u> <u>http://www.gut.jp/</u> <u>e-mail: gutp-info@v6pc.jp</u>